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Abstract 31 

Predator-prey interactions for three commercially valuable tuna species: yellowfin (Thunnus albacares), 32 

bigeye (T. obesus), and albacore (T. alalunga), collected over a 40-year period from the Pacific, Indian, 33 

and Atlantic Oceans, were used to quantitatively assess broad, macro-scale trophic patterns in pelagic 34 

ecosystems. Analysis of over 14,000 tuna stomachs, using a modified classification tree approach, 35 

revealed for the first time the global expanse of pelagic predatory fish diet and global patterns of 36 

micronekton diversity. Ommastrephid squids were consistently one of the top prey groups by weight 37 

across all tuna species and in most ocean bodies. Interspecific differences in prey were apparent, with 38 

epipelagic scombrid and mesopelagic paralepidid fishes globally important for yellowfin and bigeye 39 

tunas, respectively, while vertically-migrating euphausiid crustaceans were important for albacore tuna in 40 

the Atlantic and Pacific Oceans. Diet diversity showed global and regional patterns among tuna species. 41 

In the central and western Pacific Ocean, characterized by low productivity, a high diversity of 42 

micronekton prey was consumed while low prey diversity was evident in highly productive coastal waters 43 

where upwelling occurs. Spatial patterns of diet diversity were most variable in yellowfin and bigeye 44 

tunas while a latitudinal diversity gradient was observed with lower diversity in temperate regions for 45 

albacore tuna. Sea-surface temperature was a reasonable predictor of the diets of yellowfin and bigeye 46 

tunas, whereas chlorophyll-a was the best environmental predictor of albacore diet. These results suggest 47 

that the ongoing expansion of warmer, less productive waters in the world’s oceans may alter foraging 48 

opportunities for tunas due to regional changes in prey abundances and compositions.  49 

 50 

Keywords: meta-analysis, food webs, ecosystems, inter-ocean comparison, trophic relationships, 51 

classification trees, climate changes, macroecology    52 
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1. Introduction 53 

Examining broad-scale patterns in marine food webs and ecosystems is essential for 54 

macroecological understanding that can support ecosystem-based management of ocean resources 55 

(Pikitch et al., 2004; Marasco et al., 2007). Improved ecological understanding of dynamic open-ocean 56 

systems is becoming increasingly important to guide transboundary and cross jurisdictional management 57 

efforts of species, assemblages, and ecosystems in response to the cumulative effects of global climate 58 

change, in addition to localized impacts of fishing (Perry et al., 2010). There is growing evidence to 59 

suggest that the dynamics of several marine ecosystems have been significantly altered as a result of 60 

recent changes in climate (IPPC-AR5, 2013). At the same time, fishery-induced reductions of the biomass 61 

of large pelagic predators have been reported to have dramatic ecological consequences (Worm et al., 62 

2009; Blenckner et al., 2015), but are not well understood. Such changes directly affect the community 63 

structure and diversity of food webs, as well as the productivity and connectivity of the ecosystem’s 64 

constituent species (Doney et al., 2012). Declines in phytoplankton species and size composition have 65 

been reported in subtropical regions (Polovina and Woodworth, 2012) and the temperate North Atlantic 66 

Ocean (Beaugrand et al., 2010). Changes at the bottom of the food web that are tightly coupled to the 67 

physical environment propagate through the food web by altering energy and nutritional transfer 68 

pathways to higher-level consumers (Blanchard et al., 2012). In contrast, changes at the top of the food 69 

web, through top-down trophic effects, can be similarly important by directly and indirectly affecting the 70 

abundance and composition of lower trophic level species (Heithaus et al., 2008; Baum and Worm, 2009; 71 

Chen et al., 2016).  72 

Studies of stomach contents provide fundamental empirical knowledge of food web dynamics and 73 

predator-prey distributions. Predator-prey relationships underpin predator growth and survival and are key 74 

variables to predicting patterns in distribution and abundance, especially for highly mobile species. The 75 

efficacy and predictive capability of large-scale ecosystem models (Fulton, 2010; Dueri et al., 2012; 76 

Christensen et al., 2015; Lehodey et al., 2015) are limited by a lack of understanding of broad-scale 77 

spatial and temporal distributions of mid-trophic micronekton communities that support commercially-78 

important pelagic fishes, such as tunas and billfishes (Young et al., 2015a). Due to the difficulty and cost 79 

of gathering biological samples in the open ocean, diet studies of top predators are generally spatially and 80 

temporally restricted, thus constraining macroecological understanding of food webs. Few 81 

comprehensive, large-scale datasets of diets have been compiled, but where they do exist, major changes 82 

have been observed in the forage base of some large pelagic species. For example, Olson et al. (2014) 83 

noted a decadal shift in the diets of yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean from 84 

large, energetically rich, epipelagic prey to smaller, less nutritious, mesopelagic species as well as range 85 
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expansions for some prey. Expansion of oligotrophic oceanographic provinces is thought to be at least 86 

partly responsible for this diet shift (Olson et al., 2014). Elsewhere, declines in larger phytoplankton 87 

(diatoms), attributed to ocean warming, altered the signature fatty acid profiles of albacore tuna (Thunnus 88 

alalunga) in the western Pacific Ocean (Parrish et al., 2015; Pethybridge et al., 2015). This increasing 89 

“tropicalization” of tuna habitats sensu Parrish et al. (2015) may impact the response of tuna populations 90 

to fishing and environmental pressures as well as their health benefits to humans. Additionally, Golet et 91 

al. (2015) hypothesized that tunas can exhibit a decline in condition even when prey items are abundant 92 

due to changes in the size structure and nutritional composition of the prey.  93 

Predation plays a fundamental role in shaping ecological communities (Mourier et al., 2016) and 94 

maintaining resilience (Bellwood et al., 2004; Llope et al., 2014), although a greater understanding of the 95 

ecosystem-level effects of predation is required. Tunas are widely recognized as opportunistic generalist 96 

(i.e. non-selective) high-trophic level predators that have extensive ranges and move freely between 97 

habitats, transferring energy between otherwise isolated and nutrient-poor food webs (Alverson, 1963; 98 

Sund et al., 1981; Ménard et al., 2006; Potier et al., 2007; Young et al., 2010). Their predation habits can 99 

be used to infer (and monitor) broad community-scale changes in the abundance, availability, and 100 

diversity of poorly studied mid-trophic micronekton prey (fishes, crustaceans, cephalopods, and 101 

gelatinous organisms in the 2-20 cm size range) (Bertrand et al., 2002; Ménard et al., 2006; Nicol et al., 102 

2012; Staudinger et al., 2013b; Olson et al., 2016) and can elucidate important changes in ecosystem 103 

structure (Olson et al., 2014; Townhill et al., 2015; Yonezaki et al., 2015). Despite apparent generalist 104 

feeding, previous studies have shown that differences in vertical feeding behavior can explain inter- and 105 

intra-specific dietary differences over relatively short distances (Young et al., 2010; Williams et al., 106 

2015). Yellowfin tuna exhibit repetitive foraging dives into the deep-scattering layer (Carey and Olson, 107 

1982; Schaefer et al., 2007) but primarily occupy the epipelagic zone (Brill et al., 1999; Gunn and Block, 108 

2001), hence exploiting prey resources near the surface (Schaefer et al., 2009). By contrast, bigeye tuna 109 

(Thunnus obesus) have physiological capabilities (Holland et al., 1992; Lowe et al., 2000; Brill et al., 110 

2005) that allow them to dive deep beyond the scattering layer to exploit prey resources in the meso- and 111 

bathypelagic realms (Schaefer and Fuller, 2002; Lam et al., 2014; Fuller et al., 2015). Albacore tuna 112 

undergo large latitudinal migrations related to their life history (Childers et al., 2011; Williams et al., 113 

2015) and display diverse regionally-specific vertical behaviors (Goñi et al., 2009; Young et al., 2010; 114 

Childers et al., 2011; Cosgrove et al., 2014). In essence, these tunas are “biological samplers” of 115 

micronekton communities in different water bodies. Global and ocean-basin comparison of diets in these 116 

tuna species facilitates a greater understanding of predator-prey distributions over broader spatial 117 
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(regional to global) and biological (population to ecosystem-level) scales, thereby increasing our 118 

understanding of the effects of tuna predation on the dynamics of pelagic ecosystems. 119 

Under the umbrella of the international program Climate Impacts on Oceanic Top Predators 120 

(CLIOTOP) (Maury et al., 2010; Hobday et al., 2015), scientists from research organizations around the 121 

world compiled a dietary database of 14,185 tunas sampled in both hemispheres across all major ocean 122 

basins. Here we describe the first global inter-oceanic comparison of pelagic-predator diets, with a focus 123 

on three commercially important species: yellowfin, bigeye, and albacore tunas. Using these tuna species 124 

as biological samplers of prey in different water masses, and a modified classification tree approach, the 125 

aims were to: (1) elucidate predator-prey relationships characterizing the trophic ecology of yellowfin, 126 

bigeye, and albacore tunas on a global and cross-ocean basin scale; (2) identify spatial and biological 127 

patterns in diet composition and diet diversity in our full global diet dataset from 1969-2013; and (3) 128 

investigate the potential influence of oceanographic features on the foraging behavior of tunas using a 129 

subset of biological and available environmental data from 2003-2011 (n=5532). Two main strengths of 130 

this large global-scale diet analysis are clear: (1) it allows for comparisons of the foraging habits and 131 

patterns of micronekton diversity of each tuna species across ocean basins where previous studies 132 

described regional foraging habits with limited sample sizes; and (2) it identifies major prey guilds on a 133 

global scale which can provide insights into system energetics and when ecosystem changes at lower 134 

trophic levels may cause bottom-up effects. This analysis also furthers our understanding of the trophic 135 

ecology of tunas by applying a relatively new classification tree method for analyzing diet data, allowing 136 

for an exploratory and quantitative predictive evaluation of complex relationships between diet 137 

composition and a multitude of explanatory variables. Given that future environmental change can be 138 

predicted at large scales (IPPC-AR5, 2013), prey-environment relationships will be critical for 139 

parameterizing ecosystem models that seek to project future tuna distribution and abundance.  140 

 141 

2. Materials and methods 142 

2.1 Compilation of stomach-contents data 143 

Diet data were compiled for 14,185 yellowfin, bigeye, and albacore tunas from the Pacific, 144 

Indian, and Atlantic Oceans (Fig. 1) and assembled in a database to apply a meta-analysis and examine 145 

broad-scale diet patterns around the world. A description of the data compilation process and the regional 146 

studies used to populate the database, both published and unpublished, is documented in Young et al. 147 

(2015b). A review of fine-scale analyses of diet data within each ocean region can be found in Olson et al. 148 

(2016). To date, this database is the most extensive in spatial and temporal coverage (Table 1), spanning 149 
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40 years (1969-2013) and all major ocean basins. However, due to the disparate nature of the stomach 150 

collections with little overlap in sampling locations observed over time and differences in sampling 151 

regimes, we primarily focused our analysis on broad spatial variability in diet. 152 

2.2 Broad diet compositions of yellowfin, bigeye, and albacore tunas 153 

 We used a gravimetric index of diet importance to analyze the stomach contents data, because 154 

prey weights are appropriate for comparing the bioenergetics importance of a variety of prey to a predator 155 

(Chipps and Garvey, 2007) and pertinent for delineating food web dynamics. For each tuna species, we 156 

calculated the proportional composition by weight of each prey group per sample and averaged the 157 

proportions for each prey group over all non-empty yellowfin, bigeye, and albacore tuna stomach-158 

contents samples (Chipps and Garvey, 2007). For prey weights, we used: 159 
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where
i

M W  is mean proportion by weight for prey group i, Wij is the weight of prey group i in a tuna 161 

species, j, P is the number of non-empty stomach samples, and Q is the number of prey groups in all 162 

samples. 163 

Although nearly 300 prey taxa were available in the global stomach-contents dataset, we included 164 

only the principal prey groups in our analysis, based on their gravimetric importance. Principal prey 165 

groups were determined for each tuna species in all oceans combined and within each ocean basin (i.e. 166 

Pacific, Atlantic, and Indian Oceans) (study objective 1). Principal groups are defined as prey taxa that 167 

constituted at least 1% wet weight to the overall diet of each tuna species. Prey were identified to the 168 

taxonomic level of species in the individual regional studies used to populate our full dataset when 169 

possible, but to simplify the global analysis we grouped species into the family level. When identification 170 

to family was not possible, coarser resolutions of prey were necessary (e.g. order Stomatopoda). 171 

Functional groups were assigned to each prey group based on habitat depth distribution to gain broad 172 

understanding of vertical foraging behavior of each tuna species. We defined shallow prey as those 173 

residing above 200 m (epipelagic and epicoastal), vertically-migrating prey as those that move between 174 

shallow and deep waters (epi-mesopelagic 0-500 m; epi-bathypelagic 0 to >600 m), and deep prey as 175 

those that inhabit waters >200 m permanently (mesopelagic, meso-bathypelagic, bathypelagic). Empty 176 

stomachs, unidentified prey, and rare prey, i.e. those contributing <1% MW to the overall global diet of 177 

each tuna species, were omitted from further analyses.  178 
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 179 

2.3 Exploratory analysis 180 

To determine which predictor variables were appropriate for including in the classification tree 181 

analysis of diet data, we performed a thorough exploratory evaluation of available variables. Several 182 

predictor variables were considered for our analysis, including spatial (latitude and longitude, Longhurst 183 

province and biome (Longhurst, 1998)), temporal (year, quarter, month), gear (surface or deep gear and 184 

gear type), and biological (predator fork length (FL), weight, and sex). While we could consider all of 185 

these predictor variables in a classification tree analysis, due to the way in which trees are constructed and 186 

important variables are identified (see Section 2.5), we believed that a preliminary investigation of 187 

predictor variables was necessary to assist with the interpretation of splits arising from the model. For a 188 

subset of the diet data, the environmental variables sea-surface temperature (SST), mixed-layer depth 189 

(MLD), eddy kinetic energy (EKE), sea-surface chlorophyll-a concentration (Chla), and median 190 

phytoplankton cell mass (MB50) were extracted and/or computed from various sources (see section 2.4: 191 

Environmental data). Our exploratory analysis of these variables included simple summary statistics of 192 

each variable, pair-wise comparisons to investigate collinearity, and spatial summaries to understand how 193 

the distribution of the data varied for different categories and values of potential covariates that could be 194 

included in the model. Confounding issues with some covariates were observed (e.g. the spatial and 195 

temporal variables; tuna stomach samples expanded and contracted over space and time, and we observed 196 

little overlap in sample locations through space and time). This disproportion is primarily due to 197 

unbalanced sampling design as is common in fisheries-dependent opportunistic sampling and also 198 

because several regional studies were combined into a global meta-analysis. As a result, we focused our 199 

classification tree analyses on broad-scale spatial variability in diet and omitted time from our models. 200 

Additionally we included the categorical variable, biome (Table 2) to group provinces instead of 201 

considering a much larger and more complicated categorization such as Longhurst provinces (Longhurst, 202 

1998). Such provinces were incorporated into our classification tree analysis, because they demonstrate 203 

the biogeochemical and climatic variability across which the three tuna species were sampled from in this 204 

study (Fig. 1). The global oceans are not homogeneous regions with respect to environmental variables, 205 

thus understanding how tuna diet relates to regional dynamics (as defined by Longhurst province 206 

(Longhurst, 1998)) was necessary, and we grouped the large number of Longhurst provinces into a 207 

smaller category, biomes as defined in Longhurst (1998). We selected latitude, longitude, biome, and 208 

length as the explanatory variables used in our first classification tree analysis of the full diet dataset 209 
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(study objective 2); and latitude, longitude, biome, length, SST, MLD, EKE, Chla, and MB50 in our second 210 

classification tree models of a subset of diet data (study objective 3). 211 

2.4 Environmental data 212 

Environmental variables were considered for a subset of our diet data from 2003-2011 (Table 3) 213 

with the aim of exploring oceanographic influences on diet composition (study objective 3). The year 214 

range chosen coincided with the majority of our tuna samples and availability of environmental data. 215 

Global environmental datasets of sufficient spatial and temporal resolution generally are not available 216 

prior to the 1990s. Sea-surface temperature (°C) data were obtained using a General Circulation Model 217 

from National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System 218 

(GODAS) (GODAS, 2016) (http://apdrc.soest.hawaii.edu/datadoc/godas_monthly.php). Global-scale 219 

annual climatologies were used to extract environmental data for MLD. A monthly climatology of MLD 220 

estimated from a fixed threshold on temperature profiles using a criterion of 0.2°C was taken from the 221 

IFREMER (IFREMER, 2016) data portal 222 

(http://www.ifremer.fr/cerweb/deboyer/mld/Surface_Mixed_Layer_Depth.php) with a spatial resolution 223 

of 1° x 1° grid and was averaged over the 12 months to obtain an annual climatology. Satellite-derived 224 

EKE values were computed from geostrophic currents derived from the monthly AVISO (AVISO, 2016) 225 

Delayed-Time Reference Mean Sea-Level Anomaly (MSLA) product 226 

(http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/), combined with the 227 

Niiler climatology (Niiler et al., 2003), downloaded from the NOAA Ocean Watch (NOAA, 2016) data 228 

portal (http://oceanwatch.pifsc.noaa.gov/thredds/ncss/), and computed as EKE=0.5(U2+V2). Sea-surface 229 

chlorophyll-a concentration (Chla, mg m-3) was taken from monthly MODIS Aqua 230 

(https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php) (NASA, 2016). Median phytoplankton cell mass 231 

(MB50) was estimated using SST and Chla data and equations based on Barnes et al. (2011): MB50(log10 pg 232 

C) = 1.340–0.043(SST) + 0.929(Log10(Chla)). 233 

Because of the sparsity of the diet data, environmental data were averaged over a 1º x 1º grid by 234 

year to identify broad trends. For each 1º x 1º grid cell, environmental variables were matched to the 235 

corresponding diet data. However, Chla concentration and EKE were used without re-gridding data due to 236 

computing constraints. For these two variables each 1º x 1º grid cell and date were matched to the closest 237 

point and month available in the dataset.  238 

 239 

2.5 Classification tree analysis of stomach-contents data 240 
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We applied classification tree methodology (Breiman et al., 1984) to yellowfin, bigeye, and 241 

albacore tuna predation data separately, to explore relationships among predictor variables and diet 242 

composition using the modified approach outlined in Kuhnert et al. (2012) and illustrated in Duffy et al. 243 

(2015), Young et al. (2015b) and Olson et al. (2014). The principal prey groups used in the classification 244 

tree analysis were those that constituted at least 1% MW to the diet of each tuna species across all oceans 245 

combined to identify patterns in diet composition across space. Sample sizes of stomachs and sample 246 

locations varied through space and time for each tuna species. Thus, to gain a better representation of the 247 

relationship between predictor variables and global diet composition and diversity for each tuna species, 248 

we believed it was appropriate to run a separate classification tree for yellowfin, bigeye, and albacore 249 

tunas. Furthermore, in a preliminary analysis with all three species in one analysis, predator species was 250 

not important and results were less informative. The tree methodology developed for diet data is akin to a 251 

multinomial model but is fit non-parametrically to provide an exploratory and predictive framework for 252 

identifying complex relationships between predictor variables and diet composition (Kuhnert et al., 2012). 253 

Classification trees were developed from rearranging a multivariate response of a predator’s diet to a 254 

univariate categorical response variable of prey group (class) with observation (case) weights. The Gini 255 

index of diversity (D), which is the criterion used to determine optimal splits, was used to estimate diet 256 

diversity, where values near 0 indicate low diet diversity and values near 1 represent a highly diverse diet. 257 

Once a large tree is grown, the tree is pruned using 10-fold cross-validation and the “1 standard error” (“1 258 

SE”) rule (Breiman et al., 1984) to identify the tree that yielded the lowest cross-validated relative error or 259 

alternatively, a tree with an error that was within 1 standard error of the minimum. Predictions were 260 

formed by partitioning observations down branches of the tree until they resided in a terminal node. The 261 

relative importance of each split was represented by the length of the tree branches with longer branches 262 

indicating greater importance than shorter branches. Variable importance rankings are also a byproduct of 263 

the process of growing and pruning the tree, whereby an importance measure (calculated as a goodness of 264 

split from primary and surrogate splits (Breiman et al., 1984)) is calculated to highlight important 265 

variables in the model. The prey with the highest gravimetric proportion among a suite of prey in the diet 266 

composition was shown at each terminal node of the tree, and prey were color coded according to broad 267 

taxonomic groupings. Uncertainty in the predicted prey composition was achieved using a spatial 268 

bootstrap approach with 500 iterations, and variable importance rankings were computed for each tuna 269 

species to identify and rank important predictor variables (Kuhnert et al., 2012). The spatial bootstrap is 270 

akin to the bagging approach by Breiman (1996), where spatial bootstrap samples are drawn from the data 271 

and an unpruned tree is constructed for each sample. The spatial bootstrap accounts for spatial 272 

dependence in the data which can then be tested by fitting a variogram to the residuals formed from the 273 
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bootstrap predictions. The bootstrap is based on a large number of resamples of the data (e.g. 500), from 274 

which average prey compositions and corresponding errors can be calculated. This information can be 275 

mapped to the original tree to provide a bootstrap estimate of the prey composition and its associated 276 

error, giving an idea of the accuracy of the predictions arising from the model. Bagging was originally 277 

proposed as a method for overcoming the instability inherent in decision tree models and can be used to 278 

explore the uncertainty in the predictions from the classification trees presented here.  279 

Two classification tree analyses were conducted to address our study objectives. The first analysis 280 

was conducted on the full dataset to identify spatial and biological patterns in tuna diets (study objectives 281 

1 and 2), and we analyzed the stomach-contents data for 7295 yellowfin, 1208 bigeye and 1804 albacore 282 

tunas containing food. The second analysis explored potential oceanographic influences in addition to 283 

spatial and biological effects on tuna diets (study objective 3) using the subset with stomach-contents data 284 

for 3265 yellowfin, 589 bigeye, and 1678 albacore tunas containing food. This subset of stomach-contents 285 

data was selected based on the availability of associated environmental data.  286 

Several visualization tools were used to assist in the interpretation of key splits from the model. 287 

These included heat maps to highlight predicted prey composition at terminal nodes of the tree, partial 288 

dependence plots produced using the bootstrap method of Kuhnert et al. (2012) to explore the predicted 289 

proportion of important prey groups with confidence bands for different predictor variables, and contour 290 

maps to examine the variation in tuna diet diversity quantified by the 1 SE classification trees. Contour 291 

maps were produced using a generalized additive model fitted to latitude and longitude with smoothing 292 

splines in the R mgcv package (Wood, 2006). All tree-based analyses were implemented in R (R 293 

Development Core Team, 2013), using the ‘rpart’ package (Therneau et al., 2013).  294 

 295 

3. Results 296 

3.1 Ocean-basin diet compositions of yellowfin, bigeye, and albacore tunas 297 

 Diet composition data for the principal prey groups are summarized by tuna species and ocean 298 

basin as percentages of the gravimetric index of diet, (Eq.1:
iM W ) for the full global diet dataset in Table 299 

4. The diets of yellowfin, bigeye, and albacore tunas in each of the three oceans consisted of a wide range 300 

of micronekton fishes, squids, and crustaceans. Across all oceans, a diversity of fish prey was most 301 

prevalent in the diets of all tuna species (23.6-37.2% MW), but crustaceans and squids were also 302 

important prey for all three tunas. Epipelagic scombrid fishes and epi-mesopelagic ommastrephid squids 303 

were most important for yellowfin tuna (11.3% and 10.2% MW, respectively), ommastrephid squids for 304 
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bigeye tuna (10.0% MW), and epi-bathypelagic euphausiid crustaceans for albacore tuna (17.0% MW) 305 

across all oceans (Table 4). 306 

Tunas did not feed exclusively on one prey group, globally or at the ocean scale. Several families 307 

of fishes, squids, and crustaceans were consumed in small amounts by each of the tuna species, with only 308 

a few taxa contributing to more than 5% MW within each ocean (Table 4). Regional differences in key 309 

prey from each of the three major ocean basins for each tuna species were evident. Of the fish prey, 310 

epipelagic scombrids were important prey for yellowfin tuna in all ocean basins while epi-mesopelagic 311 

nomeid fishes were a dominant prey for yellowfin tuna in the Indian Ocean. For bigeye tuna, primary fish 312 

prey included epicoastal priancanthids and epi-mesopelagic gempylids in the Atlantic Ocean, epi-313 

mesopelagic nomeids and alepisaurids in the Indian Ocean, and mesopelagic paralepidids in both the 314 

Indian and Pacific Oceans. Key fishes consumed by albacore tuna in the Atlantic Ocean included 315 

epipelagic scomberesocids and engraulids as well as epi-mesopelagic gadids, while albacore tuna in the 316 

Indian Ocean fed mostly on epi-mesopelagic alepisaurids and epi-bathypelagic myctophids. Of the squids, 317 

ommastrephids were dominant in all regions for all tunas with the exception of albacore in the Pacific and 318 

Atlantic Oceans, while epipelagic onychoteuthids were also important in the diets of bigeye and albacore 319 

tunas in the Indian Ocean. For yellowfin tuna, key crustacean prey consisted mainly of epipelagic 320 

portunids and epicoastal stomatopods in the Indian Ocean and epipelagic galatheids in the Pacific Ocean. 321 

Other important crustacean prey included portunids for bigeye tuna in the Indian Ocean and euphausiids 322 

for albacore tuna in the Atlantic and Pacific Oceans (Table 4). 323 

 324 

3.2 Spatial and biological variables explaining diet composition 325 

3.2.1 Yellowfin tuna 326 

 Distinct geographic regions were identified by the classification tree based on the global diet 327 

composition of yellowfin tuna (Fig. 2a, cross-validated error rate =0.76, SE=0.007). Strong longitude and 328 

latitude trends were highlighted by longer tree branches and the variable importance ranking whereby 329 

longitude and latitude were closely ranked (1.00 and 0.93, respectively), followed by length and biome 330 

with shorter tree branches and lower importance (0.49 and 0.38, respectively). Explanatory variables 331 

associated with some of the important splits on the tree are labeled (Fig. 2a) while details for all internal 332 

and terminal nodes are presented in Table S1. The initial split of the classification tree, which provides 333 

the greatest reduction in deviance over the entire dataset, partitioned yellowfin tuna in the western Pacific 334 

Ocean (node 2) from yellowfin in other ocean regions (node 3). Diet diversity (D) was similar in both 335 

nodes (D=0.754, D=0.792; nodes 2 and 3, respectively), although diet composition differed between the 336 
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two nodes (Fig. 3a). Stomatopods (26% MW) were the dominant crustacean prey in yellowfin tuna from 337 

the western Pacific Ocean (Fig. 3a, node 2) while ommastrephid squids (20% MW) were important 338 

elsewhere (Fig. 3a, node 3). Stomatopods were predicted to be the most important prey for small 339 

yellowfin tuna in the western Pacific Ocean relative to other regions based on terminal nodes in the 340 

classification tree (Fig. 4a, node 4). Across all regions ommastrephid squids and scombrid fishes (Fig. 4a) 341 

were highly important, in particular for yellowfin tuna sampled in the Peru Current along the west coast 342 

of South America (node 24, Ommastrephidae) and inshore regions of the eastern Pacific Ocean (node 62, 343 

Scombridae). High proportions of other prey taxa were observed for yellowfin tuna in the California 344 

Current, along the west coast of North America, nodes 56 (galatheid crustaceans) and 115 (engraulid 345 

fishes).  346 

 347 

3.2.2 Bigeye tuna 348 

 Bigeye tuna diet also showed strong spatial patterns in the classification tree analysis, with 349 

longitude as the most important variable in explaining diet composition (rank=1.00), followed by latitude, 350 

length, and biome (ranks <0.6) (Fig. 2b, cross-validated error rate =0.882, SE=0.015). Longer branches 351 

occurred on longitude and biome in the upper portion of the tree further highlighting spatial patterns. The 352 

initial split of the classification tree identified regional differences in diet composition for small (<684.5 353 

mm, n=197, node 2) and large (≥684.5 mm, n=1,011, node 3) bigeye tunas. Small bigeye tunas sampled 354 

from the western Pacific and Indian Oceans fed primarily on stomatopod crustaceans while those from 355 

other regions fed mostly on ommastrephid squids (Fig. 2b, nodes 4 and 5) lending to the lower diet 356 

diversity (D=0.691, Fig. 3b node 2). Large bigeye tunas showed high diet diversity (D=0.85) due to an 357 

increase in piscivory and consumption of small amounts of different micronekton prey groups (molluscs, 358 

crustaceans, and fishes) as compared to smaller conspecifics (Fig. 3b, node 3). Diet composition of bigeye 359 

tuna summarized at the terminal nodes of the classification tree showed that bigeye tuna mainly fed upon 360 

small amounts of deep-dwelling or vertically-migrating micronekton including ommastrephid squids, 361 

alepisaurid, myctophid, and paralepidid fishes with only a few observations of a single prey dominating 362 

diet composition (Fig. 4b). Stomatopods (node 4) were a key prey in small bigeye tuna from the western 363 

Pacific Ocean while ommastrephids were consumed by small and large bigeye tuna in all regions (nodes 364 

4-15) and were also a dominant prey in the eastern Pacific and Atlantic Oceans (node 5) (Fig. 4b).  365 

3.2.3 Albacore tuna 366 

Latitude was the highest-ranking variable (rank=1.00) of the diet of albacore tuna, followed 367 

closely by biome and longitude, (rank=0.84 and 0.75, respectively) and lastly length (rank=0.58) (Fig. 2c; 368 
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cross-validated error rate =0.871, SE=0.014). The longest tree branches were observed for biome and 369 

latitude. The initial split of the classification tree identified regional differences in albacore tuna diet 370 

among the trade wind and coastal biomes (Atlantic Trade Wind, Indian Ocean Coastal, Indian Ocean 371 

Trade Wind, Pacific Coastal, Pacific Trade Wind) and the westerly winds biomes (Antarctic Westerly 372 

Winds, Atlantic Westerly Winds, and Pacific Westerly Winds) (Fig. 2c). Albacore consumed small 373 

amounts of various micronekton prey (shallow dwellers and vertical migrators) in the trade wind and 374 

coastal biomes resulting in a highly diverse diet (D=0.901, Fig. 3c, node 2). Within the westerly winds 375 

biomes, albacore diet diversity was moderate (D=0.594) given these tunas fed predominantly on 376 

euphausiid crustaceans (40% MW) and scomberesocid (15% MW), engraulid (13% MW), and gadid 377 

fishes (11% MW) (Fig. 3c, node 3). Diet composition summarized at the terminal nodes of the 378 

classification tree identified ommastrephid squids as a moderately important prey item for albacore tuna 379 

in the Atlantic and Indian Oceans (Fig. 4c, node 4) while euphausiid crustaceans were key prey in the Bay 380 

of Biscay (France, Spain), Mediterranean Sea and along the coast of New Zealand (Fig. 4c, nodes 14-31). 381 

 382 

3.3 Spatial trends in tuna diet  383 

Partial dependence plots were used to examine spatial patterns in the predicted proportions of 384 

prey composition using latitude and longitude, conditional on all other predictor variables in the model 385 

held constant at their respective means (Kuhnert et al., 2012). Ommastrephid squids were predicted as 386 

important prey items particularly for yellowfin and bigeye tunas with proportions varying across space 387 

(0.1-0.45) (Fig. 5). The highest predicted consumption of ommastrephid squids was in the Peru Current 388 

area of the southeastern Pacific Ocean (~0.45) as well as the Indian Ocean (~0.4) for yellowfin tuna (Fig. 389 

5a) and in the Atlantic and Pacific Oceans for bigeye (~0.3) and albacore tunas (~0.2) (Fig. 5b and c, 390 

respectively). Galatheid (~0.5) and stomatopod (~0.4) crustaceans were predicted as being prominent in 391 

yellowfin tuna diet only off the southern coast of Baja California, Mexico and in the tropical western 392 

Pacific Ocean off the coast of Indonesia, respectively (Fig. 5a). Scombrid fishes were also predicted in the 393 

stomachs of yellowfin tuna in all oceans with slightly higher proportions in yellowfin tuna from the 394 

eastern and central Pacific Ocean (~0.3). Globally, proportions of prey taxa contributing to the diet of 395 

bigeye tuna were predicted to be low (primarily <~ 0.2), but onychoteuthid squids and nomeid and 396 

paralepidid fishes expressed the highest proportions of the 19 prey taxa (Fig. 5b). The highest proportions 397 

of nomeids (~0.4) were predicted in the Indian Ocean, and the highest proportions of paralepidids were 398 

predicted in the tropical western Pacific Ocean (~0.4). For albacore tuna, euphausiid crustaceans were 399 

predicted in moderate proportions (~0.5-0.6) in the Bay of Biscay, Indian and western Pacific Oceans, 400 

scomberesocid fishes (~0.4) in the Northeast Atlantic and engraulid fishes (~0.2) in the eastern and 401 



14 
 
 

central Pacific and Atlantic Oceans (Fig. 5c). The remaining prey taxa were predicted in low proportions 402 

(≤0.1) across the globe, highlighting greater diet diversity in albacore tuna relative to yellowfin and 403 

bigeye. 404 

Global distribution of diet diversity predicted by the 1 SE classification trees were presented on 405 

contour maps for each tuna species (Fig. 6). Diet diversity of yellowfin tuna varied regionally with low 406 

diversity (D≤0.4) observed in the Pacific Coastal biome along the coasts of Baja California, Mexico 407 

(north of 20°N) and Peru (south of 5°S) as well as in the Indian Ocean Coastal biome in the southwest 408 

Indian Ocean (south of 10°S) (Fig. 6a). Yellowfin tuna in the upwelling regions off Baja California, 409 

Mexico (terminal node 115 in the classification tree, Fig. 2a) consumed primarily engraulids while those 410 

in the Peru Current (terminal node 24, Fig. 2a) fed upon ommastrephid squids. Highest diet diversity for 411 

yellowfin tuna (D≥0.9) was predicted in the south central Pacific Ocean within the Pacific Trade Wind 412 

biome between 5ºN–20ºS and 150°W–120ºW. Diet diversity of bigeye tuna also varied regionally. 413 

Highest diversity (D≥0.9) was represented among bigeye tuna within the Indian Ocean Trade Wind biome 414 

(including northern areas, north of 10°S and southeastern areas, east of 75°E) and the Atlantic Trade 415 

Wind biome (10°S, coastal Brazil) (Fig. 6b). Less diverse diets of bigeye tuna (D<0.5) were predicted in 416 

the Pacific Trade Wind biome (central eastern Pacific 125°W-100°W and western Pacific 125°E-150°E 417 

around Indonesia and Papua New Guinea), Indian Ocean coastal biome (south Africa), and in the Atlantic 418 

Westerly Winds biome (northern areas, north of 20°N) (Fig. 6b) due to the consumption of large amounts 419 

of ommastrephid squids and stomatopod crustaceans. Overall, high diversity in albacore tuna diet was 420 

predicted in tropical and subtropical regions with the highest diversity (D≥0.9) in the Pacific (west of 421 

125°W and east of 150°E) and Atlantic (tropical, near the equator) Trade Wind and the Pacific Coastal 422 

biomes (Fig. 6c). Lower diversity (D<0.5) was observed in albacore tuna diets in the temperate sampling 423 

locations, including within the Atlantic (Bay of Biscay and Mediterranean Sea) and Pacific Westerly 424 

Winds biomes (coastal, western New Zealand) and the Indian Ocean Trade Wind biome (South Africa) 425 

(Fig. 6c) based on large amounts of euphausiid crustaceans observed in albacore diets. This pattern in 426 

diversity is different from the patterns seen in yellowfin and bigeye tunas and is consistent with the results 427 

of the classification tree for albacore tuna, in which latitude was the main factor explaining diet 428 

composition. 429 

3.4 Exploring the relationship between environmental variables and diet  430 

 Environmental variables were not as important as spatial variables for yellowfin and albacore 431 

tunas, but SST was identified as the highest ranked variable influencing the diet of bigeye tunas based on 432 

classification tree analyses of the subset of data from 2003-2011 (Fig. 7). For yellowfin tuna, SST was 433 
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ranked third in importance, had a similar rank to latitude (rank=0.79 and 0.75, respectively), and was the 434 

initial split of the classification tree where stomatopods were a dominant prey predicted in warmer waters 435 

of the Pacific and Indian Oceans (Fig. 7a, cross-validated error rate=0.783, SE=0.01). The remaining 436 

biological, spatial, and environmental predictor variables had less of an effect on yellowfin tuna diet 437 

(variable importance ranking ≤ 0.3, Fig. 7a). Environmental (SST, MLD), biological (length), and spatial 438 

(longitude) variables all ranked high in importance for predicting bigeye tuna diet composition (variable 439 

importance ranking ≥0.7); long tree branches were observed for length (the initial tree split), longitude, 440 

and SST although the cross-validated error rate for this tree was the highest of the three tunas (0.9, 441 

SE=0.02) (Fig. 7b). The spatial variables biome, latitude, and longitude were the most important variables 442 

affecting albacore diet, and all ranked ≥0.8 while Chla and length were identified as moderately important 443 

variables (≥0.5) (Fig. 7c, cross-validated error rate=0.823, SE=0.015). The lowest ranked environmental 444 

variables (<0.1) on diet composition were EKE, Chla, and MB50 for yellowfin and bigeye tunas, and MB50 445 

for albacore tuna.  446 

 Predicted prey proportions for the terminal nodes of each 2003-2011 subset classification tree on 447 

yellowfin, bigeye, and albacore tunas are summarized in supplemental material Figure S1. In waters with 448 

low SSTs (<28°C), galatheid crabs (node 26) and ommastrephid squids (node 12) were dominant prey in 449 

the subtropical northeastern Pacific Ocean and in the Pacific and Atlantic Coastal biomes north of 10°N, 450 

respectively, while stomatopods (node 2) were observed as a main prey in waters with high SSTs for 451 

yellowfin tunas (Fig. S1a). High proportions of stomatopod crustaceans in the tropical western Pacific 452 

Ocean (node 4) and ommastrephid squids in the tropical eastern Pacific, Atlantic, and Indian Oceans 453 

(node 5) were predicted in small bigeye tunas (<598.5 mm) while larger bigeye tunas were predicted to 454 

have a diverse diet composed of small amounts of various micronekton (molluscs, crustaceans, and fishes, 455 

Fig. S1b). High proportions of euphausiid crustaceans were predicted for albacore tunas regionally within 456 

the Antarctic Westerly Winds and Atlantic Westerly Winds biomes while those in the coastal and trade 457 

wind biomes of the Pacific, Atlantic, and Indian Oceans were predicted to have a diverse diet consisting 458 

of various salps, molluscs, crustaceans, and fishes (Fig. S1c). 459 

 To further evaluate the relationship between environmental variables and diet, we examined 460 

partial dependence plots showing important prey taxa and the highest ranked environmental variables for 461 

each tuna species (Fig. 8). Vertically-migrating ommastrephid squids were observed in the diet of 462 

yellowfin tunas at all terminal nodes of the tree including regions with warm and cold SSTs but showed a 463 

decrease in proportions when SSTs were >~22°C. The bootstrapped 95% confidence band around these 464 

predictions was large indicating considerable error in the relationship between SST and the predicted 465 

proportion of ommastrephids (Fig. 8a). Epicoastal stomatopod prey increased with increasing SST, and 466 
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epipelagic galatheid crabs showed a slight increase around 25°C before decreasing in the diets of 467 

yellowfin tunas, although the confidence bands around the predictions of the latter were also large (Fig. 468 

8a). Epipelagic scombrid fishes were also common prey of yellowfin tunas, but no apparent relationship 469 

was observed with SST (Fig. 8a). SST was identified as the highest ranking environmental variable 470 

(rank=1.00) influencing the diet of bigeye tunas. Vertically-migrating ommastrephid squids and nomeid 471 

and myctophid fishes declined with increasing SST while epipelagic onychoteuthid squids and deep-472 

dwelling paralepidid fishes increased with increasing SST; bootstrapped confidence bands around these 473 

predictions were narrow although few points were observed at lower temperatures (Fig. 8b). Stomatopods 474 

showed little relationship with SST for bigeye tunas. Ommastrephid and paralepidid prey proportions also 475 

showed strong decreasing and increasing patterns with increasing MLD, respectively, while 476 

onychoteuthids appeared consistently in small proportions, those of stomatopods varied across MLDs, 477 

and nomeids and myctophids reduced around 40 and 45 m, respectively (Fig. 8c). For albacore tunas, 478 

vertically-migrating euphuasiid crustaceans and gadid fishes increased with increasing Chla before again 479 

decreasing around concentrations at ~0.4 mg m-3 (Fig. 8c). 480 

 481 

4. Discussion 482 

This is the first study to examine the global feeding ecology of three commercially important, 483 

wide-ranging tuna species, and to our knowledge the first study of its kind for any fish species at this 484 

spatio-temporal scale. We took a macroecological approach to examine abiotic and biological factors 485 

driving diet patterns to show explicit differences in micronekton prey composition and corresponding diet 486 

diversity of these tuna species using a novel dataset and methodology that was both exploratory and 487 

predictive. The predation habits of the tuna species we present here are important particularly because 488 

data on offshore pelagic prey are sparse; this information can thus be used to infer (and monitor) broad 489 

community-scale changes in the abundance, availability, and diversity of poorly studied mid-trophic 490 

micronekton prey. Intraspecific differences in micronekton prey observed spatially support the existing 491 

view of generalist feeding habits in these tunas, reinforcing the efficacy of tunas as biological samplers, 492 

while observed interspecific differences provides evidence for potential trophic niche separation when 493 

species overlap. The linkage between diet diversity and productivity observed in some ocean regions 494 

suggests potential trophic effects that may be associated with the expansion of warmer, less productive 495 

waters.  496 

 497 

4.1 Global and ocean basin characterizations of micronekton communities 498 
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In this study, teleost fishes comprised the majority of micronekton in terms of number of species 499 

and weight for each of the three tuna species and in all ocean bodies. Two exceptions were Mollusca and 500 

Arthropoda, which dominated the diet of albacore tuna in the Indian and Atlantic Oceans, respectively. 501 

Our results support the realization that fishes are an important component of mesopelagic micronekton 502 

with recent work suggesting that global biomass estimates have been underestimated by an order of 503 

magnitude in open ocean ecosystems (Kaartvedt et al., 2012; Irigoien et al., 2014). However, modelling 504 

work in the central north Pacific Ocean showed that while fishes represent most of the micronekton 505 

biomass, crustaceans account for much more of the micronekton production and along with molluscs, 506 

provide the most important direct trophic pathways to top predators (Choy et al., 2016).  507 

Differences in prey groups were noted among ocean basins reflecting regional variation in forage 508 

communities. Ommastrephid squids were an important prey particularly for yellowfin and bigeye tunas 509 

across all oceans and albacore tuna in the Indian Ocean. Our results are complementary to other recent 510 

trophic studies that documented the importance of ommastrephid squids in the diets of tunas (Logan et al., 511 

2013; Ménard et al., 2013; Young et al., 2013; Olson et al., 2014; Teffer et al., 2015; Itoh and Sakai, 512 

2016) and highlight the central role that these squid play as key prey and linkages between upper and 513 

lower trophic levels in open ocean ecosystems. Ommastrephid squids are common in pelagic 514 

environments (Anderson and Rodhouse, 2001; Rodhouse, 2005; Arkhipkin et al., 2015), and their 515 

prevalence in the diets of the three tuna species included in our analysis is likely at least partly due to their 516 

ubiquity across the broad spatial region considered in our analysis. The greatest diet proportions of 517 

ommastrephid squid were found in the Indian Ocean, consistent with the high abundances of these squid 518 

in the region (Ménard et al., 2013). Other important prey taxa in the Indian Ocean were portunid crabs, 519 

nomeid fishes, and stomatopod crustaceans for both yellowfin and bigeye tunas, and onychoteuthid squids 520 

for both bigeye and albacore tunas. Surface swarms of portunids were reported as a seasonal trophic link 521 

in open-ocean ecosystems in the western Indian Ocean (Romanov et al., 2009), while the dominance of 522 

mantis shrimp (order Stomatopoda) in tuna diets may reflect their periodic availability that can fluctuate 523 

over decadal scales (Romanov et al., 2015). In the Pacific Ocean, galatheid crustaceans and scombrid 524 

fishes, paralepidid fishes, and euphausiid crustaceans were prominent prey for yellowfin, bigeye, and 525 

albacore tunas, respectively. Paralepidid fishes are typically fast moving species distributed across 526 

epipelagic, mesopelagic, and bathypelagic waters in all oceans (Peterson et al., 1999) and are commonly 527 

consumed by other top predators in the Pacific Ocean (Choy et al., 2016). In the Atlantic Ocean, 528 

important prey taxa included scombrid and nomeid fishes in yellowfin tuna, priacanthid and gempylid 529 

fishes in bigeye tuna, and euphausiids (krill), engraulids (anchovies), scomberesocids, and gadids in 530 

albacore tuna. Anchovy is an energetically-rich prey (Spitz et al., 2010; Albo-Puigserver et al., this issue) 531 
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and likely plays a significant role in albacore tuna energy storage and condition during their summer 532 

feeding migration (Goñi and Arrizabalaga, 2010). While documenting dominant prey taxa of these tunas 533 

assists in understanding the biomass and biogeography of these micronekton, we should note that some 534 

micronekton groups that are known to be important to tunas and other top predators in particular regions 535 

of each ocean basin (or at certain times of the year) may have been masked by the global scale of our 536 

analysis. For example, gelatinous filter feeders, predatory jellies, and amphipods that are highly abundant 537 

in Hawaiian waters and important prey for tuna in this region (Graham et al., 2007) were not well 538 

represented in this study.  539 

Clear interspecific differences in the prey taxa consumed by the three tunas were apparent in this 540 

study, as has been observed in regional studies (Ménard et al., 2006; Young et al., 2010; Goñi et al., 541 

2011). Across oceans, yellowfin tuna consumed primarily epipelagic and epicoastal prey, such as 542 

scombrid fishes and stomatopod crustaceans, representative of the surface layer habitat above the 543 

thermocline where yellowfin tuna spends the majority of their time (Schaefer et al., 2009). Bigeye tuna 544 

consumed higher proportions of deep-living and vertical-migrating prey than the other tuna species in this 545 

study, reflecting its capacity to dive and forage at depths for long periods of time (Holland et al., 1992; 546 

Brill et al., 2005; Schaefer and Fuller, 2010). High proportions (>5% MW) of epicoastal priacanthid and 547 

epi-mesopelagic gempylid, alepisaurid, and nomeid fishes as well as epipelagic portunid crustaceans and 548 

onychoteuthid squid, support the belief that bigeye tuna consume larger amounts of mesopelagic species 549 

than yellowfin tuna (Galván-Magaña, 1999; Potier et al., 2004; IATTC, 2013; Olson et al., 2014). 550 

Albacore tuna diet consisted of a greater variety of both shallow and deep-living prey taxa, reflecting its 551 

broad vertical and horizontal feeding distribution and residency in both tropical and temperate 552 

environments (Teffer et al., 2015; Williams et al., 2015). Albacore tuna diet included several prey taxa 553 

that were either uncommon (e.g. euphausiids (krill)) or absent (epi-mesopelagic gadid and epipelagic 554 

scomberesocid fishes) in yellowfin and bigeye tuna diets, potentially due to a greater sampling range for 555 

albacore tuna that included temperate waters. The importance of krill in albacore tuna diets has been 556 

noted in temperate parts of the southwest Pacific Ocean (Young et al., 1993) and southern Atlantic Ocean 557 

(Goñi et al., 2011), where they occurred in high densities during upwelling events.  558 

 559 

4.2 Global patterns in diet diversity linked to productivity 560 

A clear latitudinal diversity gradient was present for albacore tuna while distinct spatial patterns 561 

were found for each tuna species. Few studies have looked at the species diversity of micronekton in the 562 

open oceans although a unimodal productivity-diversity relationship for marine phytoplankton has been 563 

suggested (Vallina et al., 2014). In a range of open ocean taxa, including zooplankton, squids and krill, 564 
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marked peaks of species diversity have been recorded at broad mid-latitudinal bands in all oceans 565 

(Rutherford et al., 1999; Tittensor et al., 2010). This pattern also appears to hold for large oceanic 566 

predators such as sharks, tunas and billfishes (Worm et al., 2005; Tittensor et al., 2010). High global diet 567 

diversity for all tuna species in this study support their generalist feeding habits, resourcefulness given 568 

patchy prey distributions, and their high energetic requirements (Olson and Boggs, 1986; Whitlock et al., 569 

2015). The latitudinal gradient of diet diversity and the fact that latitude explained most of the variance 570 

for the diet of albacore tuna is consistent with life history traits of this species. Albacore tuna has a large 571 

latitudinal distribution and performs long-range summer migrations with important latitudinal 572 

displacements between tropical and subtropical wintering regions and temperate summer feeding regions 573 

(Williams et al., 2015).  574 

We found that diet diversity of all tuna species is linked to ocean productivity with highest 575 

diversity in the most oligotrophic offshore regions and lowest diversity in many of the nearshore 576 

upwelling regions. Oligotrophic central gyres of oceans are generally characterized by more species-rich 577 

and longer food webs than more productive inshore systems, where a few species tend to be predominant 578 

(McGowan and Walker, 1985; Venrick, 1990; Rohde, 1992). Low diet diversity (<0.5) values were 579 

consistently predicted in areas where primary production is relatively high and coastal upwelling occurs 580 

such as in the eastern Pacific Ocean off the coast of Peru and Mexico, coastal areas in the northwest 581 

Mediterranean Sea, coastal areas of southern New Zealand, and in the Bay of Biscay (Behrenfeld et al., 582 

2006; Carr et al., 2006). This low diet diversity in productive coastal waters is consistent with the “waist” 583 

sensu Rice (1995) or “wasp-waist” (Cury et al., 2000) structure of these food webs in which intermediate 584 

trophic levels have low diversity while low and high trophic levels are more diverse. The mid-trophic 585 

level species dominating these “wasp-waist” food webs tend to be densely aggregated and of high 586 

energetic value (e.g. engraulids (Soriguer et al., 1997; Litz et al., 2010)), characteristics that maximize 587 

foraging efficiency for tunas and other top predators. In contrast, for all species, high diet diversity was 588 

reported in the tropical central Pacific Ocean where high-nutrient, low-Chla conditions are observed 589 

(Morel et al., 2010). Our subset analysis, which included environmental variables, also supported the 590 

linkage between albacore tuna diet diversity and productivity with Chla ranked as an important variable. 591 

Many of the prey groups identified in these regions have low lipid content (e.g. Salpidae (Doyle et al., 592 

2007), Stomatopoda (Wardiatno et al., 2012)) and lower associated energetic value to tunas. Studies of 593 

individual systems have provided evidence of diet diversity in productive upwelling regions (Madigan et 594 

al., 2012) and a “wasp-waist” structure in relatively oligotrophic waters (Griffiths et al., 2013), so trophic 595 

effects of ocean warming may not always follow the general inversion of prey diversity and productivity 596 

observed in most of our global analysis. One anomaly to the linkage between ocean production and diet 597 
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diversity was found in bigeye tuna with low diversity predicted in the western parts of the WARM 598 

Longhurst province (inside the Pacific Trade Wind biome) (Longhurst, 1998) near Indonesia and Papua 599 

New Guinea, typically characterized by low productivity. However, North Pacific thermocline and South 600 

Pacific lower thermocline waters merge and produce a small upwelling area in the Halmahera Sea 601 

(Susanto et al., 2006). Bigeye tuna have been shown to exhibit a highly-adaptive foraging strategy relative 602 

to the fine-scale spatiotemporal variability in the distribution and abundance of prey within their habitat 603 

(Fuller et al., 2015).  604 

Little is known about how prey diversity impacts the transfer of energy and matter among trophic 605 

levels. Mechanistically, the inverse relationship between tuna diet diversity and productivity shown in this 606 

study is likely influenced by various ecosystem processes, mostly trophic transfer dynamics. In waters 607 

where production will decline, tuna diet diversity may increase and trophic efficiency may decrease due 608 

to patchy prey distributions. Generalist species are expected to be more resilient to climate change than 609 

specialists (Harley, 2011; Staudinger et al., 2013a), and the generalist feeding strategy of tunas combined 610 

with their highly mobile lifestyles (Polovina, 1996) should allow them to adapt to changes in available 611 

prey resources. However, disproportionate impacts on specific life stages (e.g. early life history stages) 612 

and the rapid pace of climate change have the potential to exceed the adaptive capacity of many species 613 

thus leading to declines (Loarie et al., 2009; Beever et al., 2016). Enhanced resource use efficiency, 614 

resulting from diversity-dependent niche partitioning, has also been reported to benefit ecosystem 615 

structure and function (Behl et al., 2012). Prey diversity has been shown to influence energy transfer 616 

among trophic levels, and in ways that may oppose the influence of consumer diversity on resource 617 

utilization in food webs (Hillelbrand and Cardinale, 2004). Long term factors that influence tuna, 618 

including ocean productivity (Boyce et al., 2010; Polovina and Woodworth, 2012) and habitat 619 

compression (Stramma et al., 2008; Stramma et al., 2010; Stramma et al., 2012) have been reported. For 620 

example, shoaling of the oxygen minimum zone can restrict the depth distribution of epipelagic predators 621 

(Stramma et al., 2012), potentially narrowing foraging habitat and altering forage communities, but this 622 

hypothesis remains untested.  623 

 624 

4.3 Key drivers of tuna diet composition  625 

The best predictor variables of diet composition in the full classification tree analysis were 626 

longitude for yellowfin and bigeye tunas and latitude for albacore tuna. These results show that spatial 627 

variables may be used as proxies for more dynamic regional-scale features and processes, such as net 628 

productivity, which is further supported by the importance of the biome variable in most tuna models. 629 

Slight differences in the explanatory power and importance of the geographic variables among tuna 630 



21 
 
 

species may reflect their life history; yellowfin and bigeye tunas are strictly tropical tuna species and 631 

show more localized movements (Schaefer and Fuller, 2002; Schaefer et al., 2007) while albacore tunas 632 

exhibit pronounced latitudinal migrations in their juvenile stage (Childers et al., 2011). Few diet studies 633 

of tuna have been undertaken at large enough latitudinal ranges to test spatial and environmental 634 

correlates of trophic interactions and prey diversity. In the southwest Pacific Ocean, variations of diet 635 

with latitude have been recorded in albacore (Williams et al., 2015), but not bigeye tuna (Young et al., 636 

2010), while in the eastern Pacific Ocean latitudinal differences in yellowfin diet have been observed 637 

(Olson et al., 2014).  638 

Regional studies have shown ontogenetic trends in tuna prey species composition and size 639 

distribution (Ménard et al., 2006; Graham et al., 2007; Young et al., 2010; Kuhnert et al., 2012; Logan et 640 

al., 2013; Teffer et al., 2015), but at the global scale, our analysis suggests that body size is less influential 641 

than spatial variables. Tuna body size (fork length) was ranked as a moderately important variable (<0.6) 642 

in most tuna models. Tunas are generalist predators that consume a diverse array of prey families and a 643 

broad spectrum of prey sizes (Olson et al., 2016). Regional analyses of tuna predator-prey size 644 

relationships generally show a wedge-shaped pattern in which tunas of all sizes consume small prey and 645 

larger individuals consume an increasingly broad range of prey sizes (Ménard et al., 2006; Young et al., 646 

2010; Logan et al., 2013). Given that prey selection generally broadens with tuna size rather than 647 

completely changing, tunas of different sizes in a given region would have some dietary overlap with 648 

each other as well as other large pelagic predators. The greater relative importance of spatial variables in 649 

our global analysis indicates that regional differences in available prey taxa exert a greater effect on tuna 650 

diet than subtler body size-based variability and highlights the importance of spatial scale in assessments 651 

of tuna trophic ecology. 652 

The subset analysis showed that some environmental factors were reasonable predictors of diet 653 

composition, particularly SST for yellowfin and bigeye tunas, MLD for bigeye tuna, and Chla for 654 

albacore tuna. Increasing SSTs seemed to affect the diet of yellowfin and bigeye tunas through decreased 655 

proportions of vertically-migrating ommastrephid squids, which have been shown in regional studies to 656 

be sensitive to climate (van der Kooij et al., 2016). A similar relationship was found for nomeid fishes 657 

consumed by bigeye tuna. In contrast, consumption of epicoastal stomatopod crustaceans and deep-658 

dwelling paralepidid fishes increased in yellowfin and bigeye tunas, respectively, with increasing SSTs. 659 

Tittensor et al. (2010) reported that SST was the primary environmental predictor of broad-scale global 660 

patterns of diversity across oceanic groups of taxa including tunas and billfishes, sharks, squids, and 661 

euphausiids. As MLD increased, ommastrephid squids decreased while paralepidid fishes increased in the 662 

diets of bigeye tuna. Reductions in Chla influenced the diet of albacore tuna by increasing proportions of 663 
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vertically-migrating euphausiid crustaceans and gadid fishes. Our results suggest that with predicted 664 

climate changes (latitudinal expansion of low Chla, increased stratification, and elevated mean SST) 665 

(Polovina et al., 2008), tunas might be impacted by disproportionate responses by their prey groups. 666 

However, we note that for all tunas there were high cross-validated error rates and large confidence bands 667 

for some prey observed in the subset analyses, reducing our confidence in potential relationships between 668 

the environmental variables used in our tree models and diet of tunas. Bottom-up environmental forcing is 669 

modulated at each level of the food chain, so tuna and their prey are several steps removed from the 670 

driving physical oceanographic changes. Furthermore, life history integration over larger space and time 671 

scales means that environmental effects can be complicated. In such cases, additional effort acquiring 672 

environmental variables may be misplaced, and instead, information representing the behavior and 673 

availability of intermediate prey fields is needed (Hobday and Hartog, 2014).    674 

 675 

4.4 Caveats and future research directions 676 

Various predator-prey and environmental drivers can result in considerable temporal and spatial 677 

differences in patterns of predation. For this reason, studies of predation often require large sample sizes 678 

and high quality data to overcome uncertainty. Although this study undertook a sophisticated analysis of 679 

the largest diet dataset ever compiled for these tuna species, there are several sources of uncertainty. 680 

Firstly, the ability to explore global spatial patterns over time is restricted to sample coverage within and 681 

among regions. For each study, sampling effort was typically restricted to a specific region (Fig. S2) and 682 

time period such that we cannot yet account for known temporal patterns (e.g. seasonality) in predator-683 

prey interactions. Furthermore, disparities in the sample sizes for each ocean region across different time 684 

periods as well as fishing method contribute bias to the global summaries of this meta-analysis, because 685 

different gear types capture fish at different depths (Bertrand et al., 2002; Potier et al., 2004). A mixture 686 

of various sampling procedures (e.g. techniques, gear types, and personnel) used in the field and 687 

laboratory analyses are an additional source of uncertainty (Chipps and Garvey, 2007). The 688 

environmental data used in the models were obtained from static annual climatologies and from broad 689 

temporal scales (e.g. a yearly resolution), which lack the resolution necessary to capture any transient 690 

dynamics, especially relevant at highly seasonal latitudes (Vallina et al., 2014). Additionally, most of the 691 

environmental variables considered in our subset analysis were surface-related and are challenging to 692 

relate to the diet of tuna that forage at depth. Spatial and temporal differences in fishing pressure could 693 

also have influenced our global results if predator removals induced trophic cascades (Kitchell et al., 694 

1999; Schindler et al., 2002) although simulated fishery removals of the tuna species included in our 695 

analysis do not alter underlying food web structure (Griffiths et al., 2013). Lastly, stomach contents 696 
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analysis has inherent sources of uncertainty related to biased estimates of certain prey groups and life-697 

history stages (e.g. larval) and the need for taxonomic expertise (Pierce and Boyle, 1991); this is 698 

especially true for tuna species that forage in open-ocean and deep-sea environments where many prey 699 

taxa are poorly known. 700 

Future work should focus on assessing temporal (e.g. seasonal and monthly) variation in relative 701 

diet composition and diet diversity at regional or ocean-basin scales (Olson et al., 2014). Well-designed, 702 

long-term diet studies will allow for a better understanding of tuna diet in relation to environmental 703 

variables on finer temporal scales than the broad yearly scales used here to examine potential 704 

relationships. Such studies could confirm or refute the patterns described here as they could be affected 705 

by a changing climate. Better accounting for sampling uncertainty when interpreting the results of dietary 706 

studies (e.g. Bayesian and sensitivity analysis), will be of primary importance. Due to the differences in 707 

foraging behavior of the three tuna species analyzed here, information on depth of tuna capture and 708 

digestion state of prey will improve knowledge of gear-related effects on diet and may help researchers 709 

begin to disentangle possible relationships between ocean dynamics occurring at depth and how they may 710 

relate to diet. Prey size information also was not available for the global diet analysis and the upper size 711 

range of certain prey species within some of the families represented in the full dataset are outside of the 712 

prey-range size of tunas. Future work could include assessing predator-prey size relationships to gain 713 

understanding of fine-scale patterns in size compositions across space and time as well as insights into 714 

resource sharing and partitioning among other tunas and large pelagic fishes. We encourage similar 715 

global-scale analyses using other dietary tracers such as stable isotopes, fatty acids, trace metals, and 716 

studies that combine dietary data with tagging, pelagic trawl or acoustic measurements that would allow 717 

better understanding of predator-prey interactions.  718 

Insights into the spatial differences in diet are increasingly important given the overlap of 719 

commercial fisheries with areas where climate change is predicted to be a critical issue (Hobday, 2010; 720 

Polovina et al., 2011). Regional variation in diet and hence production may change subsequent model 721 

forecasts. Our diet diversity results could allow ecosystem models to allocate energy flow based on a diet 722 

diversity index and allow related parameters to vary regionally. For traditional ecosystem models (such as 723 

Ecopath (Christensen et al., 2015) and Atlantis (Fulton, 2010)) diet diversity information could help 724 

refine linkages between species and allow these links to vary in space and time. The global diet diversity 725 

indices we have described here could also be extracted from ecosystem models, and thus be used in direct 726 

comparisons to validate and calibrate ecosystem models over historical periods, which should give greater 727 

confidence in future projections. 728 

 729 
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4.5 Conclusions 730 

Examining global predation patterns in tunas provides key information on the structure and 731 

function of marine ecosystems through characterizing micronekton diversity, distribution, and 732 

availability. Such information on the opportunistic foraging behavior of tunas is important particularly 733 

given that data on offshore pelagic prey are scarce. Global and ocean basin differences were detected 734 

within and between each of the three tuna species studied. Spatial patterns in the diet diversity of these 735 

tuna species were consistent with theories that predict an inverse relationship between primary 736 

productivity and species diversity. Our results collectively suggest that the ongoing expansion of warmer, 737 

less productive waters in the world’s oceans may alter foraging opportunities of tunas in important 738 

upwelling regions as a result of changes in the regional abundance and availability of prey resources. If 739 

micronekton communities shift to lower quality species or if the size structure of prey populations are 740 

truncated either due to changes in the environment or to fishing pressure, these changes could have 741 

consequences for tuna energetics (Golet et al., 2007; Österblom et al., 2008; Golet et al., 2015). The 742 

ecological impacts of these changes are not clear, particularly on the biology and population dynamics of 743 

the tunas (e.g. growth rates, reproduction), but shifts to less energetically-favorable prey could impact 744 

these parameters given the high energetic demands of tuna species (Brill, 1996; Korsmeyer and Dewar, 745 

2001; Olson et al., 2016). Resulting changes in tuna abundance, condition and distribution due to prey 746 

variability have notable economic implications as the three focal species in this paper contribute 747 

approximately 40% of global tuna catches (FAO, 2010), and are valued at $5.79-7.5 billion USD per year 748 

(Galland et al., 2016). It is critical that broad scale monitoring of tuna feeding ecology should therefore 749 

continue and be an integral component of sustainable tuna management strategies into the future.  750 
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Table 1. Summary of data compiled across the globe for the full dataset of yellowfin (Thunnus albacares), bigeye 
(T. obesus), and albacore (T. alalunga) tunas. Number of non-empty stomachs includes only those with principal 
prey i.e., prey that constituted at least 1% mean weight to the overall global diet of each tuna species. These data 
were used in the first classification tree analysis of the entire global diet dataset to identify broad-scale spatial and 
biological patterns in tuna diets. 

 

Predator Yellowfin Bigeye Albacore 

Number of stomachs  

(non-empty) 

9331 (7295) 2127 (1208) 2727 (1804) 

Sampling years 1969-2013 1969-2012 1970-2011 

Length range, caudal fork length 

(mm)  

119-2140 270-1930 396-1280 

Length mean ± SD (mm) 891±342 1070±321 788±172 

Latitude range  37.5°S-39.6°N 36.8°S-41.5°N 44.0°S-51.0°N 

Longitude range 179.9°W-178.2°E 179.9°W-179.8°E 178.2°W-178.4°E 
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Table 2. Biomes used in the classification tree analysis and corresponding Longhurst Biogeographical Provinces (Longhurst 1998) shown in Figure 1. 

Biome  
Biome  

Abbreviation 

Province  

Abbreviation 
Province Definition 

Antarctic Westerly Winds Biome  ANTWW SANT    Subantarctic Water Ring Province  

    SSTC     South Subtropical Convergence Province 

Atlantic Coastal Biome  AC GUIN Guinea Current Coastal Provinces 

  NWCS    Northwest Atlantic Shelves Province   

Atlantic Trade Wind Biome ATW ETRA Eastern Tropical Atlantic Province 

NATR North Atlantic Tropical Gyral Province 

SATL South Atlantic Gyral Province 

    WTRA Western Tropical Atlantic Province 

Atlantic Westerly Winds Biome AWW GFST Gulf Stream Province 

MEDI Mediterranean Sea, Black Sea Province 

NADR North Atlantic Drift Province 

  NASW North Atlantic Subtropical Gyral Province (West)   

    NASE North Atlantic Subtropical Gyral Province (East) 

Indian Ocean Coastal Biome IOC ARAB Northwestern Arabian Coastal Province 

  EAFR Eastern Africa Coastal Province   

  INDW Western Indian Coastal Province   

Indian Ocean Trade Wind Biome IOTW ISSG Indian South Subtropical Gyre Province 

    MONS Indian Monsoon Gyres Province 

Pacific Coastal Biome PC AUSE East Australian Coastal Province 

CCAL California Current Province 

CAMR Central American Coastal Province 

HUMB/CHIL Humboldt Current Coastal Province 

NEWZ New Zealand Coastal Province 

    SUND Sunda-Arafura Shelves Province 

Pacific Trade Wind Biome PTW ARCH Archipelagic Deep Basins Province 

NPTG North Pacific Tropical Gyre Province 

PEQD Pacific Equatorial Divergence Province 

PNEC North Pacific Equatorial Countercurrent Province 

SPSG South Pacific Subtropical Gyre Province 

    WARM Western Pacific Warm Pool Province 

Pacific Westerly Winds Biome PWW TASM Tasman Sea Province 
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Table 3. Summary of data for the diet subset from 2003-2011 of yellowfin (Thunnus albacares), bigeye (T. obesus), and albacore (T. 

alalunga) tunas. Number of non-empty stomachs includes only those with principal prey i.e., prey that constituted at least 1% mean 
weight to the overall global diet of each tuna species. These data were used in the second classification tree analysis to investigate the 
potential influence of oceanographic features on tuna foraging behavior. Values for the environmental variables are reported as mean 
± standard deviation. 

Predator Yellowfin Bigeye Albacore 

Number of stomachs  

(non-empty) 

4320 (3265) 1227 (589) 2536 (1678) 

Length range, caudal fork length (mm)  119-1970 270-1930 396-1280 

Length mean (mm) mean ± SD 773±352 1070±321 788±172 

Latitude range  37.47°S-39.6°N 36.8°S-41.5°N 44.0°S-51.0°N 

Longitude range 179.9°W-179.8°E 179.9°W-179.8°E 178.2°W-178.4°E 

Sea-surface temperature (SST°C)  27.3±3.0 27.5±.5 20.3±5.3 

Mixed-layer depth (MLD, m)  43.1±9.3 43.7±11.9 48.4±12.4 

Eddy kinetic energy (EKE, cm2/s2)  250.1±406.7 240.6±408.6 41.5±86.2 

Chlorophyll a (Chla, mg m-3)  0.3±1.2 0.1±0.1 0.2±0.2 

Median phytoplankton cell mass (MB50, pgC)  -0.6±0.3 -0.7±0.3 -0.2±0.4 
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Table 4. Taxonomic composition of the principle prey in the full diet dataset of yellowfin (Thunnus albacares), bigeye (T. obesus), and albacore (T. alalunga) tunas. Principal prey 
used in the classification tree analysis (CART) are defined as those that constituted at least 1% wet weight to the overall diet of each tuna species in all oceans combined (All) and 
are represented in column ‘CART Prey’ where 1=yellowfin, 2=bigeye, 3=albacore tunas: M=molluscs, C=crustaceans, S=Salps, F=fishes, respectively. Principal prey are also 
included for each tuna species in each ocean basin (PO=Pacific, AO=Atlantic, IO=Indian) where the 1% weight limit (above) refers to the overall diet of each tuna species within 
each ocean basin. Number of tunas (n) with principal prey in the stomachs is provided for each ocean basin and all oceans combined. Values are expressed in percentages of mean 

proportion by weight 
i

MW. When prey could not be identified to family, coarser taxonomic levels are shown (ord=order, infraord=infraorder, subord=suborder). Functional group 

definitions: Epicoastal=only in the epipelagic domain (from the surface to 100-200m depth), but a coastal/lagoon/reef linked species, Epipelagic=only in the epipelagic domain 
(from the surface to 100-200 m depth), Epi-mesopelagic=vertical migrators in the epipelagic (from the surface to 100-200 m depth) and the mesopelagic domain (200 to 500 m 
depth), Epi-bathypelagic=in the epipelagic (from the surface to 100-200 m depth) and the bathypelagic domain during the day (deeper than 500-600 m depth), Mesopelagic=only 
in the mesopelagic domain (200 to 500 m depth), Meso-bathypelagic=in the mesopelagic (200-500 m depth) and the bathypelagic domain (deeper than 500-600 m depth), and 
Bathypelagic=only in the bathypelagic domain (deeper than 500-600 m depth). Rare prey are those that contributed <1% wet weight to the overall diet of each tuna species in each 
ocean basin and all oceans combined. 

Yellowfin Bigeye Albacore 
% 

i
MW  % 

i
MW  %

i
MW  

CART  
Prey 

Functional 
Group 

PO 
n=6,088 

AO 
n=320 

IO 
n=887 

All 
n=7,295 

PO 
n=591 

AO 
n=40 

IO 
n=577 

All 
n=1,208 

PO 
n=863 

AO 
n=859 

IO 
n=82 

All 
n=1,804 

Mollusca 12.37 12.23 14.08 12.00 10.00 15.46 22.76 14.33 4.49 3.53 38.85 4.82 

Cavoliniidae Epipelagic       1.03       

Argonautidae M-Arg1 Epi-mesopelagic 2.20 1.82         

Octopodidae Unassigned           1.83   

Enoploteuthidae M-Eno2 Epi-mesopelagic   1.01     1.03 1.57     2.19   

Histioteuthidae Meso-bathypelagic           1.24   

Ommastrephidae M-Omm1,2,3 Epi-mesopelagic 10.17 10.37 10.12 10.17 8.16 10.77 12.56 9.97 2.04 2.28 17.70 2.88 

Onychoteuthidae M-Ony2,3 Epipelagic   2.95   1.84 1.03 8.63 4.35 2.45 17.14 1.94 

Loliginidae Epicoastal   1.85     1.60       

Arthropoda 14.97 9.00 22.25 15.98 3.21 1.03 17.63 8.45 21.11 29.39 13.96 23.55 

Stomatopoda (ord) C-Stom1,2,3 Epicoastal 3.79 7.97 4.14 2.08 4.49 2.87 3.16 2.25 1.69 

Odontodactylidae Epipelagic           1.47   

Decapoda (ord) C-Dec1 Unassigned   4.65 1.05         
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Yellowfin Bigeye Albacore 
% 

i
MW  % 

i
MW  %

i
MW  

CART  
Prey 

Functional 
Group 

PO 
n=6,088 

AO 
n=320 

IO 
n=887 

All 
n=7,295 

PO 
n=591 

AO 
n=40 

IO 
n=577 

All 
n=1,208 

PO 
n=863 

AO 
n=859 

IO 
n=82 

All 
n=1,804 

Galatheidae C-Gal1 Epipelagic 5.74 4.60         

Enoplometopidae C-Eno3 Epi-mesopelagic           1.62   

Brachyura (infraord) C-Bra1 Epicoastal 1.67 1.36         

Portunidae C-Por1,2 Epipelagic 1.99 13.08 3.40   6.63 2.56     

Oplophoridae C-Opl2 Meso-bathypelagic   1.20     3.04 1.33   3.11   

Thalassocarididae C-Thal1,2,3 Epipelagic 1.79 1.44 1.12   2.50 1.17 

Pasiphaeidae Epi-bathypelagic           1.38   

Palinura (infraord) C-Pal3 Epicoastal         1.06   

Penaeidae C-Pen2 Epi-bathypelagic       3.47 1.70   1.29   

Euphausiacea (ord) C-Euph3 Epi-bathypelagic   1.13       10.86 24.43 16.96 

Amphipoda (ord) C-Amp3 Epi-mesopelagic   3.23         1.82 1.24 

Hyperiidea (subord) C-Hyper3 Epi-mesopelagic           1.75 1.94 1.36 

Lestrigonidae Epi-mesopelagic           1.00   

Phronimidae C-Phro3 Epi-mesopelagic         1.80   

Phrosinidae C-Phros3 Epi-mesopelagic         1.74 1.13 

Platyscelidae Epi-mesopelagic       1.03     1.28   

Chordata 39.55 30.21 39.50 37.21 18.48 33.82 42.63 27.41 9.11 43.10 32.46 23.56 

Salpidae S-Sal3 Epi-mesopelagic         3.03 1.71 

Exocoetidae F-Exo1 Epipelagic 2.20 1.74 3.87 2.40         

Hemiramphidae F-Hem1 Epipelagic 1.74 1.46         

Scomberesocidae F-Scomb1,3 Epipelagic         1.74 11.66 1.95 6.58 

Diretmidae Bathypelagic       1.63       

Syngnathidae Epicoastal           1.70   
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Yellowfin Bigeye Albacore 
% 

i
MW  % 

i
MW  %

i
MW  

CART  
Prey 

Functional 
Group 

PO 
n=6,088 

AO 
n=320 

IO 
n=887 

All 
n=7,295 

PO 
n=591 

AO 
n=40 

IO 
n=577 

All 
n=1,208 

PO 
n=863 

AO 
n=859 

IO 
n=82 

All 
n=1,804 

Bramidae F-Bra2,3 Epi-mesopelagic   2.14   1.93 1.48 1.65 1.31 2.86   

Carangidae F-Car1 Epicoastal 4.07 2.90 3.49 3.92   1.05     1.38 1.00   

Priacanthidae Epicoastal   2.94     12.37       

Gempylidae F-Gem2 Epi-mesopelagic   2.57     6.61 3.68 2.21   1.69   

Scombridae F-Scom1,2 Epipelagic 12.30 9.19 6.57 11.33   2.74 4.10 2.27     

Nomeidae F-Nom1,2 Epi-mesopelagic 4.28 6.04 9.05 5.04 2.74 4.30 5.90 4.02   3.09   

Chiasmodontidae F-Chi2 Epi-bathypelagic   1.07     2.33 1.23   1.61   

Dactylopteridae Epicoastal   2.69           

Balistidae F-Bal1 Epicoastal 1.54 1.35         

Molidae Epipelagic           1.00   

Monacanthidae Epicoastal   1.17           

Ostraciidae F-Ost1 Epicoastal 3.88 3.20         

Clupeidae Epicoastal   1.55     1.03       

Engraulidae F-Eng1,3 Epipelagic 4.03 3.12 3.66       12.32 2.00 6.46 

Alepisauridae F-Ale2,3 Epi-mesopelagic   3.26   2.15 9.94 4.95 1.15 4.81   

Omosudidae F-Omo2 Mesopelagic       2.04     2.17   

Paralepididae F-Par2,3 Mesopelagic   2.32   5.16 2.63 8.74 6.36 1.89 1.14 2.41 1.55 

Scopelarchidae F-Sco2 Bathypelagic           1.07   

Trachipteridae F-Trach3 Meso-bathypelagic           3.27 1.60 

Gadidae F-Gad3 Epi-mesopelagic           11.64 5.66 

Myctophidae F-Myc1,2,3 Epi-bathypelagic 1.14 2.04 1.23 3.90 2.50 3.38 3.62   5.01   

Sternoptychidae F-Ste2 Epi-bathypelagic     1.49 1.09   1.80   
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Yellowfin Bigeye Albacore 
% 

i
MW  % 

i
MW  %

i
MW  

CART  
Prey 

Functional 
Group 

PO 
n=6,088 

AO 
n=320 

IO 
n=887 

All 
n=7,295 

PO 
n=591 

AO 
n=40 

IO 
n=577 

All 
n=1,208 

PO 
n=863 

AO 
n=859 

IO 
n=82 

All 
n=1,804 

Phosichthyidae F-Pho1 Epi-mesopelagic 4.35 1.99   3.62 1.10               

Rare prey 12.46 10.80 14.59 14.62 13.93 2.82 8.96 13.36 16.06 6.80 7.08 16.36 

Unidentified prey 20.65 37.77 9.58 20.20 54.38 46.87 8.01 36.45 49.22 17.18 7.65 31.71 

Number of rare prey taxa 167 63 92 203 113 17 56 128 123 43 25 142 
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Figure captions: 

Figure 1 Map of sample locations for yellowfin, bigeye, and albacore tunas in the compiled global data base. Longhurst 

Provinces (Longhurst 1998) for corresponding biomes used in the classification tree analysis (Figure 2) are displayed. 

Abbreviations are defined in Table 2. 

Figure 2 Classification tree for (a) yellowfin, (b) bigeye, and (c) albacore tuna diet composition from the analysis of the 

full dataset. The tree diagram shows all node numbers, the split variables, and their values for (b) bigeye and (c) albacore 

tunas. For (a) yellowfin tuna, the split variables and their values are shown for the most important nodes (see Table S1 in 

the Supplement for details on all nodes).  Lon: longitude; Lat: latitude; Len: length; Biome: see Table 2 for description. 

To facilitate interpretation of the graphs, additional information on the location of the samples is provided in italics below 

the spatial split variables (longitudes or biomes): WPO=Western Pacific Ocean, EPO=Eastern Pacific Ocean; 

CPO=Central Pacific Ocean; IO=Indian Ocean; AO=Atlantic Ocean; MS= Mediterranean Sea; BB=Bay of Biscay 

(France, Spain); NZ=New Zealand. The prey taxon with the highest proportion weight among a suite of prey in the diet 

composition is shown at the terminal nodes (see Table 4 for prey abbreviations). Broad prey groups are S=salps (tan), 

M=molluscs (blue), C=crustaceans (red – orange), and F=fishes (green – yellow). Node numbers are labeled according to 

the naming convention of (Breiman et al., 1984). Variable importance rankings for each covariate are shown in the inset. 

Figure 3 Details of the top split (nodes 2 and 3) of the 1 SE classification tree for (a) yellowfin tuna partitioned by 

longitude (Fig. 2a), (b) bigeye tuna partitioned by length (Fig. 2b), and (c) albacore tuna partitioned by Biome (Fig. 2c), 

showing sample locations, sample numbers, and prey compositions (mean proportion by weight). For all plots, D is the 

Gini index of diversity. S-, M-, C-, and F-: Salps, molluscs, crustaceans, and fishes, respectively. 

Figure 4 Prey proportions by weight for (a) yellowfin (b) bigeye, and (c) albacore tunas predicted at the terminal nodes of 

the 1 SE classification trees of the full diet dataset. Terminal node labels, ordered bottom to top, correspond to the 

terminal node labels on the trees in Fig. 2, ordered left to right. The bold black line represents the first split of the trees, 

while dotted lines represent the second split on each side of the trees in Fig. 2. S-, M-, C, and F-: Salps, molluscs, 

crustaceans, and fishes, respectively. See Table 1 for description of Biomes. 

Figure 5 Spatial partial dependence plots showing the relationship between the spatial variables (latitude and longitude) 

and the predicted proportions by weight of four principal prey in the diet composition of (a) yellowfin, (b) bigeye, and (c) 

albacore tunas in the full global dataset. Proportions range from 0 to 1 (scale bar). Predictions are based on averaging 

across all other variables in the classification tree model. S-, M-, C-, and F-: Salps, molluscs, crustaceans, and fishes, 

respectively. 

Figure 6 Spatial trends in diet diversity on contour maps, ranging between 0 and 1, predicted by the 1SE classification 

trees of (a) yellowfin, (b) bigeye, and (c) albacore tunas for the full diet dataset. Values of the Gini index of diversity were 

smoothed with a generalized additive model. Black points represent sample locations of each tuna species. 
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Figure 7 Classification tree for (a) yellowfin, (b) bigeye, and (c) albacore tuna diet composition from the analysis of the 

subset of data from 2003-2011. The tree diagram shows all node numbers, the split variables, and their values. Lon: 

longitude; Lat: latitude; Len: length; Biome: see Table 2 for description; SST: sea-surface temperature; MLD: mixed layer 

depth; eke: eddy kinetic energy; chl: chlorophyll-a concentration, MB50: median phytoplankton cell mass. To facilitate 

interpretation of the graphs, additional information on the location of the samples is provided in italics below the spatial 

split variables (longitudes or biomes) and the SST splits: WPO=Western Pacific Ocean, EPO=Eastern Pacific Ocean; 

CPO=Central Pacific Ocean; IO=Indian Ocean; AO=Atlantic Ocean; MS= Mediterranean Sea; BB=Bay of Biscay 

(France, Spain); NZ=New Zealand. The prey taxon with the highest proportion weight among a suite of prey in the diet 

composition is shown at the terminal nodes (see Table 4 for definitions of prey abbreviations). Broad prey groups are 

S=salps (tan), M=molluscs (blue), C=crustaceans (red – orange), and F=fishes (green – yellow). Node numbers are labeled 

according to the naming convention of (Breiman et al., 1984). Variable importance rankings for each covariate are shown 

in the inset. 

Figure 8 Partial dependence plots constructed on the subset of data from 2003-2011 for (a) yellowfin, (b,c) bigeye, and 

(d) albacore tunas showing the relationship between sea-surface temperature ((a,b); SST°C), mixed layer depth ((c); MLD, 

m), and chlorophyll-a concentration ((d); chl, mg m-3). A rug plot is shown beneath each plot to indicate the distribution 

of the measurements. 
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Table S1. Summary of splits for all internal and terminal nodes in the tree model. 'Parent node' = node number, using the criteria of 
Breiman et al. (1984), split into left and right child nodes; ‘YFT’ = number of yellowfin tuna (Thunnus albacares) whose diet data are 
partitioned at each node; ‘Diversity’ = diversity index ranging from 0 to 1; ‘Split’ = the covariate and its value splitting to the left side 
of each parent node, where longitude and latitude measured in degrees, biome assigned from Longhurst provinces (Longhurst 1998), 
length measured in mm, and <leaf> = terminal node; ‘Pclass’ = the predicted prey class comprising the greatest mean proportion 
weight among all prey in the diet composition of yellowfin at each node (prey abbreviations defined in Table 4; M=molluscs, 
C=crustaceans, F=fishes, respectively), ‘Left child’ = node number resulting from parent node split to the left, ‘Right child’ = node 
number resulting from parent node split to the right. 

Parent node YFT Diversity Split (to left) Pclass Left child Right child 

1 7295 0.83 Longitude ≥ 121.3°E M-Omm 2 3 

2 2198 0.75 Length < 925 mm C-Stom 4 5 

3 5097 0.79 Longitude ≥ -85.0°W M-Omm 6 7 

4 1384 0.63 <leaf> C-Stom -- -- 

5 814 0.83 Latitude < -22.6°S F-Scom 10 11 

6 1712 0.68 Biome splits as AC, AWW, IOC, PC, PTW M-Omm 12 13 

7 3385 0.80 Latitude ≥ 17.3°N F-Scom 14 15 

10 472 0.73 Longitude < 154.0°E C-Dec 20 21 

11 342 0.81 Latitude ≥ -10.79°S M-Omm 22 23 

12 829 0.55 Latitude < -5.4°S M-Omm 24 25 

13 883 0.81 Length < 1185 mm M-Omm 26 27 

14 1107 0.74 Longitude < -106.7°W C-Gal 28 29 

15 2278 0.73 Length < 983 mm F-Scom 30 31 

20 283 0.65 <leaf> C-Dec -- -- 

21 189 0.72 <leaf> F-Car -- -- 

22 127 0.74 <leaf> M-Omm -- -- 

23 215 0.77 <leaf> F-Scom -- -- 

24 335 0.33 <leaf> M-Omm -- -- 

25 494 0.70 Latitude ≥ 7.2°N M-Omm 50 51 

26 330 0.76 <leaf> M-Omm -- -- 

27 553 0.71 Longitude < 57.5°E C-Por 54 55 

28 791 0.65 Latitude < 23.4°N C-Gal 56 57 

29 316 0.59 <leaf> F-Car -- -- 

30 1273 0.81 Longitude ≥ -103.8°W M-Omm 60 61 

31 1005 0.60 Longitude ≥ -101.4°W F-Scom 62 63 

50 340 0.61 <leaf> M-Omm -- -- 

51 154 0.64 <leaf> F-Phos -- -- 

54 363 0.60 <leaf> C-Por -- -- 

55 190 0.60 <leaf> F-Nom -- -- 

56 291 0.37 <leaf> C-Gal -- -- 

57 500 0.69 Length ≥ 667.5 mm M-Omm 114 115 

60 495 0.74 Latitude ≥ 8.7°N M-Omm 120 121 

61 778 0.86 Longitude < -115.1°W F-Scom 122 123 

62 318 0.41 <leaf> F-Scom -- -- 

63 687 0.69 Latitude < 11.8°N F-Scom 126 127 
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Parent node YFT Diversity Split (to left) Pclass Left child Right child 

114 348 0.61 <leaf> M-Omm -- -- 

115 152 0.36 <leaf> F-Eng -- -- 

120 308 0.68 <leaf> M-Omm -- -- 

121 187 0.72 <leaf> F-Scom -- -- 

122 425 0.79 Longitude < -125.8°W M-Omm 244 245 

123 353 0.72 Latitude ≥ 9.7°N C-Gal 246 247 

126 557 0.64 <leaf> F-Scom -- -- 

127 130 0.59 <leaf> F-Ost -- -- 

244 154 0.71 <leaf> F-Scom -- -- 

245 271 0.78 <leaf> M-Omm -- -- 

246 215 0.54 <leaf> C-Gal -- -- 

247 138 0.38 <leaf> F-Ost -- -- 
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Figure S1 Prey proportions by weight for (a) yellowfin (Thunnus albacares), (b) bigeye (T. obesus), and (c) albacore (T. alalunga) tuna predicted at the terminal 

nodes of the 1 SE classification trees for the subset of diet data from 2003-2011. Terminal node labels, ordered bottom to top, correspond to the terminal node 

labels on the trees in Fig. 7, ordered left to right. The bold black line represents the first split of the trees, while dotted lines represent the second split on each side 

of the trees in Fig. 7.  S-, M-, C-, and F-: Salps, molluscs, crustaceans, and fishes, respectively. See Table 2 for description of Biomes. 
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Figure S2 Number of tunas sampled from 1969-2013 in 5° x 5°areas for (a) yellowfin (Thunnus albacares), (b) bigeye (T. 
obesus), and (c) albacore (T. alalunga) tunas.   

 

 




